Cart (Loading....) | Create Account
Close category search window
 

Competition Versus Cooperation on the MISO Interference Channel

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Larsson, E.G. ; Dept. of Electr. Eng., Linkoping Univ., Linkoping ; Jorswieck, E.A.

We consider the problem of coordinating two competing multiple-antenna wireless systems (operators) that operate in the same spectral band. We formulate a rate region which is achievable by scalar coding followed by power allocation and beamforming. We show that all interesting points on the Pareto boundary correspond to transmit strategies where both systems use the maximum available power. We then argue that there is a fundamental need for base station cooperation when performing spectrum sharing with multiple transmit antennas. More precisely, we show that if the systems do not cooperate, there is a unique Nash equilibrium which is inefficient in the sense that the achievable rate is bounded by a constant, regardless of the available transmit power. An extension of this result to the case where the receivers use successive interference cancellation (SIC) is also provided. Next we model the problem of agreeing on beamforming vectors as a non-transferable utility (NTU) cooperative gametheoretic problem, with the two operators as players. Specifically we compute numerically the Nash bargaining solution, which is a likely resolution of the resource conflict assuming that the players are rational. Numerical experiments indicate that selfish but cooperating operators may achieve a performance which is close to the maximum-sum-rate bound.

Published in:

Selected Areas in Communications, IEEE Journal on  (Volume:26 ,  Issue: 7 )

Date of Publication:

September 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.