By Topic

A Novel Two-Stage Impulse Noise Removal Technique Based on Neural Networks and Fuzzy Decision

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Sheng-Fu Liang ; Dept. of Comput. Sci. & Inf. Eng., Nat. Cheng Kung Univ., Tainan ; Shih-Mao Lu ; Jyh-Yeong Chang ; Chin-Teng Lin

In this paper, a novel two-stage noise removal algorithm to deal with impulse noise is proposed. In the first stage, an adaptive two-level feedforward neural network (NN) with a backpropagation training algorithm was applied to remove the noise cleanly and keep the uncorrupted information well. In the second stage, the fuzzy decision rules inspired by the human visual system (HVS) are proposed to classify the image pixels into human perception sensitive class and nonsensitive class, and to compensate the blur of the edge and the destruction caused by the median filter. An NN is proposed to enhance the sensitive regions with higher visual quality. According to the experimental results, the proposed method is superior to conventional methods in perceptual image quality as well as the clarity and smoothness in edge regions.

Published in:

IEEE Transactions on Fuzzy Systems  (Volume:16 ,  Issue: 4 )