Scheduled System Maintenance on May 29th, 2015:
IEEE Xplore will be upgraded between 11:00 AM and 10:00 PM EDT. During this time there may be intermittent impact on performance. We apologize for any inconvenience.
By Topic

A predictive control for a matrix converter-fed permanent magnet synchronous machine

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Morel, F. ; AMPERE-INSA de Lyon, Batiment Leonard de Vinci, Villeurbanne ; Retif, J.-M. ; Xuefang Lin-Shi ; Allard, B.
more authors

Many research efforts have been dedicated to matrix converters for several years. As major technological issues are now solved, this structure will widespread in industrial applications, in particular with AC motors. Current control is a key issue for AC motor drives, so many control schemes have been proposed. Some of them proposed at first for inverters, were applied to matrix converters. Among algorithms used with inverters, predictive control shows very good performances. In this paper a new control scheme is proposed for a matrix converter- fed permanent magnet synchronous machine. Literature about matrix converter technology and control and about predictive control for inverter-fed AC machines is reviewed. The proposed predictive control principle, the model of the whole machine - converter and the cost-function are detailed. The method offers a trade-off between the quality of motor currents and input power factor. Finally experimental results are reported. The feasibility and the effectiveness of the proposed method is assessed.

Published in:

Power Electronics Specialists Conference, 2008. PESC 2008. IEEE

Date of Conference:

15-19 June 2008