By Topic

Observations of neutral depletion and ion acceleration in a high-power argon helicon plasma

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
C. Mark Denning ; University of Wisconsin-Madison, 1500 Engineering Dr., 53706 USA ; Matt Wiebold ; John E. Scharer

Summary form only given as follows. Measurements are performed on an argon helicon plasma with an axial magnetic field (with and without a magnetic nozzle) of up to 1 kG in the antenna source region and 1.5 kG at the nozzle peak. Discharges are produced for pressures between 0.15 and 5 mtorr with incident 13.56 MHz RF power levels of between 300 and 3000 W. The electron density is determined with microwave interferometer as the fill pressure and the magnetic field strength and geometry are varied. The plasma density and electron temperature are measured using a double Langmuir probe. 488 nm Ar II emission calibrated for the measured electron temperature is used to determine the axial plasma density profile. Collisional-radiative models for Ar II and Ar I are used to determine the electron temperature and neutral density respectively by comparing excited-level population densities obtained with experimental spectra with densities predicted computationally. Axial variations of plasma density, electron temperature, and neutral density are measured and discussed for a wide range of fill pressures and magnetic field strengths for the uniform and nozzle configurations. Effects of neutral depletion are observed, including an increase in the electron temperature and a maximum plasma density limit that is a function of fill pressure and the magnetic field. Observations of substantial localized plasma density reduction as the magnetic field and coupled RF power are increased are observed. Additionally, the axial ion velocity distribution function is measured using tunable diode laser-induced fluorescence (LIF) to determine the effect of neutral depletion on the axial ion flux.

Published in:

Plasma Science, 2008. ICOPS 2008. IEEE 35th International Conference on

Date of Conference:

15-19 June 2008