By Topic

Accurate Litho Model Tuning Using Design-Based Defect Binning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jim Vasek ; Freescale Semicond. Inc., Austin, TX ; Vicky Svidenko ; Youval Nehmadi ; Rinat Shimshi

Advanced lithography optical proximity correction (OPC) techniques rely on accurately tuned process models. Although through-process OPC models are being used for critical layers at the 65-nm node, typically an initial model is created at a single optimized process setting. Such ldquobest conditionrdquo models often produce process-window limiting structures that can impact yield. A new methodology is presented for identifying misprinted structures during the qualification of a new photomask and optimizing the process model based on those structures. Instead of the traditional approach which employs repeater analysis, the new technique bins the process-limiting structures according to their design. This method enables efficient data reduction and identification of a new feature set for lithography process model tuning.

Published in:

IEEE Transactions on Semiconductor Manufacturing  (Volume:21 ,  Issue: 3 )