By Topic

Self-Organizing and Scalable Shape Formation for a Swarm of Pico Satellites

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)
Pinciroli, Carlo ; IRIDIA, Univ. Libre de Bruxelles, Brussels ; Birattari, M. ; Tuci, E. ; Dorigo, M.
more authors

We present a scalable and distributed control strategy for swarms of satellites to autonomously form an hexagonal lattice in space around a predefined meeting point. The control strategy is modeled as an artificial potential field. Such potential field is split in two main terms: a local potential is used to form locally hexagonal lattices based on the well known Lennard-Jones potential, and a global potential used to join the lattices into a single one. The control strategy uses only simple local information about few neighbouring satellites and assumes that each satellite can estimate its position with respect to the meeting point. Experiments show the results of the method with up to 500 satellites. The proposed method is general and can be adapted to build different kinds of lattices and shapes.

Published in:

Adaptive Hardware and Systems, 2008. AHS '08. NASA/ESA Conference on

Date of Conference:

22-25 June 2008