By Topic

Injection and Avalanche Electroluminescence of \hbox {Al}_{\hbox {0.1}} \hbox {Ga}_{\hbox {0.9}} \hbox {N/Al}_{\hbox {0.15}} \hbox {Ga}_{\hbox {0.85}} \hbox {N} Multiple Quantum Wells

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Sheng-Kun Zhang ; Dept. of Phys., New York City Coll. of Technol., Brooklyn, OH ; Wubao Wang ; Alfano, R. ; Dabiran, Amir M.
more authors

Three periods of Al0.1Ga0.9N/Al0.15Ga0.85 N multiple quantum wells (MQWs) were used as the active region of a p-i-n diode fabricated on 6H-SiC substrate. Electroluminescence (EL) of these MQWs has been investigated in both injection and avalanche modes. Band-to-band luminescence of the Al0.1Ga0.9N wells was found to peak at 364 nm in the injection mode and in the range of 364-372 nm in the avalanche mode. The most striking phenomenon is that band-to-band EL of the Al0.15Ga0.85N barriers has also been observed in the injection mode, while it is not seen in the avalanche mode. This is explained by considering different sources of carriers and different carrier transportation mechanisms in the two modes. The luminescence intensity I EL has a power-law dependence on the current I by I EL prop I 2 in the injection mode and by I EL prop I 4 in the avalanche mode.

Published in:

Selected Topics in Quantum Electronics, IEEE Journal of  (Volume:14 ,  Issue: 4 )