Cart (Loading....) | Create Account
Close category search window
 

On the Source of Jitter in a Room-Temperature Nanoinjection Photon Detector at 1.55 \mu \hbox {m}

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

8 Author(s)
Memis, O.G. ; Dept. of Electr. Eng. & Comput. Sci., Northwestern Univ., Evanston, IL ; Katsnelson, Alex ; Mohseni, H. ; Minjun Yan
more authors

The transient response of a nanoinjection infrared photon detector was studied by exploring the relation between lateral charge transfer and jitter. The jitter of the device was measured to be 15 ps at room temperature. The jitter was almost independent of the pulse power, even after device saturation. Spatial maps for delay and amplitude were acquired. The carrier velocity was extracted from the measurements and compared with that of the simulation model. The jitter due to transit time was calculated to be in agreement with the measured data, which indicated that the jitter is primarily transit time limited.

Published in:

Electron Device Letters, IEEE  (Volume:29 ,  Issue: 8 )

Date of Publication:

Aug. 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.