By Topic

Sparse Representation in Structured Dictionaries With Application to Synthetic Aperture Radar

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Varshney, K.R. ; Lab. for Inf. & Decision Syst., Massachusetts Inst. of Technol., Cambridge, MA ; Cetin, M. ; Fisher, J.W. ; Willsky, A.S.

Sparse signal representations and approximations from overcomplete dictionaries have become an invaluable tool recently. In this paper, we develop a new, heuristic, graph-structured, sparse signal representation algorithm for overcomplete dictionaries that can be decomposed into subdictionaries and whose dictionary elements can be arranged in a hierarchy. Around this algorithm, we construct a methodology for advanced image formation in wide-angle synthetic aperture radar (SAR), defining an approach for joint anisotropy characterization and image formation. Additionally, we develop a coordinate descent method for jointly optimizing a parameterized dictionary and recovering a sparse representation using that dictionary. The motivation is to characterize a phenomenon in wide-angle SAR that has not been given much attention before: migratory scattering centers, i.e., scatterers whose apparent spatial location depends on aspect angle. Finally, we address the topic of recovering solutions that are sparse in more than one objective domain by introducing a suitable sparsifying cost function. We encode geometric objectives into SAR image formation through sparsity in two domains, including the normal parameter space of the Hough transform.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 8 )