Scheduled System Maintenance:
On May 6th, single article purchases and IEEE account management will be unavailable from 8:00 AM - 5:00 PM ET (12:00 - 21:00 UTC). We apologize for the inconvenience.
By Topic

Acousto-Ultrasonic Optical Fiber Sensors: Overview and State-of-the-Art

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Wild, G. ; Phys. Res. Group, Edith Cowan Univ., Perth, WA ; Hinckley, S.

This paper gives a review of acoustic and ultrasonic optical fiber sensors (OFSs). The review covers optical fiber sensing methods for detecting dynamic strain signals, including general sound and acoustic signals, high-frequency signals, i.e., ultrasonic/ultrasound, and other signals such as acoustic emissions, and impact induced dynamic strain. Several optical fiber sensing methods are included, in an attempted to summarize the majority of optical fiber sensing methods used to date. The OFS include single fiber sensors and optical fiber devices, fiber-optic interferometers, and fiber Bragg gratings (FBGs). The single fiber and fiber device sensors include optical fiber couplers, microbend sensors, refraction-based sensors, and other extrinsic intensity sensors. The optical fiber interferometers include Michelson, Mach-Zehnder, Fabry-Perot, Sagnac interferometers, as well as polarization and model interference. The specific applications addressed in this review include optical fiber hydrophones, biomedical sensors, and sensors for nondestructive evaluation and structural health monitoring. Future directions are outlined and proposed for acousto-ultrasonic OFS.

Published in:

Sensors Journal, IEEE  (Volume:8 ,  Issue: 7 )