By Topic

Stability and Stabilization of Delayed T--S Fuzzy Systems: A Delay Partitioning Approach

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Yan Zhao ; Space Control & Inertial Technol. Res. Center, Harbin Inst. of Technol., Harbin, China ; Huijun Gao ; Lam, J. ; Baozhu Du

This paper proposes a new approach, namely, the delay partitioning approach, to solving the problems of stability analysis and stabilization for continuous time-delay Takagi-Sugeno fuzzy systems. Based on the idea of delay fractioning, a new method is proposed for the delay-dependent stability analysis of fuzzy time-delay systems. Due to the instrumental idea of delay partitioning, the proposed stability condition is much less conservative than most of the existing results. The conservatism reduction becomes more obvious with the partitioning getting thinner. Based on this, the problem of stabilization via the so-called parallel distributed compensation scheme is also solved. Both the stability and stabilization results are further extended to time-delay fuzzy systems with time-varying parameter uncertainties. All the results are formulated in the form of linear matrix inequalities (LMIs), which can be readily solved via standard numerical software. The advantage of the results proposed in this paper lies in their reduced conservatism, as shown via detailed illustrative examples. The idea of delay partitioning is well demonstrated to be efficient for conservatism reduction and could be extended to solving other problems related to fuzzy delay systems.

Published in:

Fuzzy Systems, IEEE Transactions on  (Volume:17 ,  Issue: 4 )