By Topic

DeMIMA: A Multilayered Approach for Design Pattern Identification

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Gueheneuc, Y.-G. ; Dept. d''Inf. et Rech. Operationnelle, Univ. Montreal, Montreal, QC ; Antoniol, G.

Design patterns are important in object-oriented programming because they offer design motifs, elegant solutions to recurrent design problems, which improve the quality of software systems. Design motifs facilitate system maintenance by helping to understand design and implementation. However, after implementation, design motifs are spread throughout the source code and are thus not directly available to maintainers. We present DeMIMA, an approach to identify semi-automatically micro-architectures that are similar to design motifs in source code and to ensure the traceability of these micro-architectures between implementation and design. DeMIMA consists of three layers: two layers to recover an abstract model of the source code, including binary class relationships, and a third layer to identify design patterns in the abstract model. We apply DeMIMA to five open-source systems and, on average, we observe 34% precision for the considered 12 design motifs. Through the use of explanation-based constraint programming, DeMIMA ensures 100% recall on the five systems. We also apply DeMIMA on 33 industrial components.

Published in:

Software Engineering, IEEE Transactions on  (Volume:34 ,  Issue: 5 )