By Topic

Fast Human Detection Using a Novel Boosted Cascading Structure With Meta Stages

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yu-Ting Chen ; Inst. of Inf. Sci., Acad. Sinica, Taipei ; Chu-Song Chen

We propose a method that can detect humans in a single image based on a novel cascaded structure. In our approach, both intensity-based rectangle features and gradient-based 1-D features are employed in the feature pool for weak-learner selection. The Real AdaBoost algorithm is used to select critical features from a combined feature set and learn the classifiers from the training images for each stage of the cascaded structure. Instead of using the standard boosted cascade, the proposed method employs a novel cascaded structure that exploits both the stage-wise classification information and the interstage cross-reference information. We introduce meta-stages to enhance the detection performance of a boosted cascade. Experiment results show that the proposed approach achieves high detection accuracy and efficiency.

Published in:

IEEE Transactions on Image Processing  (Volume:17 ,  Issue: 8 )