Cart (Loading....) | Create Account
Close category search window
 

Efficient decoding algorithm for affine reflection group codes of rank 2

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Niyomsataya, T. ; Sch. of Inf. Technol. & Eng., Univ. of Ottawa, Ottawa, ON ; Miri, A. ; Nevins, M.

This paper presents an efficient decoding algorithm for group codes based on affine reflection groups of rank 2. The proposed decoding algorithm works exceptionally well for a large number of codewords (or even infinite constellations) which is useful for high data rate transmission. It is derived from the geometry of the groups and is equivalent to the maximum likelihood (ML) criterion. Simulations show signal constellations obtained from affine reflection group A2 has higher symbol-error rate (SER) performance compared to QAM at the same rate.

Published in:

Communications, 2008 24th Biennial Symposium on

Date of Conference:

24-26 June 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.