Cart (Loading....) | Create Account
Close category search window
 

A method for improved standardization of in vivo calcaneal time-domain speed-of-sound measurements

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Wear, K.A. ; Center for Devices & Radiol. Health, Silver Spring, MD

Although calcaneal speed of sound (SOS) is an effective predictor of osteoporotic fracture risk, clinical SOS measurements exhibit a high degree of inter-system variability. Calcaneal SOS is usually computed from time-of-flight measurements of broadband ultrasound pulses that propagate through the foot. In order to minimize the effects of multi-path interference, many investigators measure time-of-flight from markers near the leading edge of the pulse. The calcaneus is a highly attenuating, highly inhomogeneous bone that distorts propagating ultrasound pulses via frequency-dependent attenuation, reverberation, dispersion, multiple scattering, and refraction. This pulse distortion can produce errors in leading-edge transit-time marker-based SOS measurements. In this paper, an equation to predict dependence of time-domain SOS measurements on system parameters (center frequency and bandwidth), transit-time marker location, and bone properties (attenuation coefficient and thickness) is validated with through-transmission measurements in a bone-mimicking phantom and in 73 women in vivo, using a clinical bone sonometer. In order to test the utility of the formula for suppressing system dependence of SOS measurements, a wideband laboratory data acquisition system was used to make a second set of through-transmission measurements on the phantom. The compensation formula reduced system-dependent leading-edge transit-time marker-based SOS measurements in the phantom from 41 m/s to 5 m/s and reduced average transit-time marker-related SOS variability in 73 women from 40 m/s to 10 m/s. The compensation formula can be used to improve standardization in bone sonometry.

Published in:

Ultrasonics, Ferroelectrics and Frequency Control, IEEE Transactions on  (Volume:55 ,  Issue: 7 )

Date of Publication:

July 2008

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.