By Topic

Local Hull-Based Surface Construction of Volumetric Data From Silhouettes

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dongjoe Shin ; Sch. of Eng., Univ. of Warwick, Coventry ; Tardi Tjahjadi

The marching cubes (MC) is a general method which can construct a surface of an object from its volumetric data generated using a shape from silhouette method. Although MC is efficient and straightforward to implement, a MC surface may have discontinuity even though the volumetric data is continuous. This is because surface construction is more sensitive to image noise than the construction of volumetric data. To address this problem, we propose a surface construction algorithm which aggregates local surfaces constructed by the 3-D convex hull algorithm. Thus, the proposed method initially classifies local convexities from imperfect MC vertices based on sliced volumetric data. Experimental results show that continuous surfaces are obtained from imperfect silhouette images of both convex and nonconvex objects.

Published in:

IEEE Transactions on Image Processing  (Volume:17 ,  Issue: 8 )