By Topic

Globally-Synchronized Frames for Guaranteed Quality-of-Service in On-Chip Networks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Lee, J.W. ; Comput. Sci. & Artificial Intell. Lab., Massachusetts Inst. of Technol., Cambridge, MA ; Man Cheuk Ng ; Asanovic, K.

Future chip multiprocessors (CMPs) may have hundreds to thousands of threads competing to access shared resources, and will require quality-of-service (QoS) support to improve system utilization. Although there has been significant work in QoS support within resources such as caches and memory controllers, there has been less attention paid to QoS support in the multi-hop on-chip networks that will form an important component in future systems. In this paper we introduce globally-synchronized frames (GSF), a framework for providing guaranteed QoS in on-chip networks in terms of minimum bandwidth and a maximum delay bound. The GSF framework can be easily integrated in a conventional virtual channel (VC) router without significantly increasing the hardware complexity. We rely on a fast barrier network, which is feasible in an on-chip environment, to efficiently implement GSF. Performance guarantees are verified by both analysis and simulation. According to our simulations, all concurrent flows receive their guaranteed minimum share of bandwidth in compliance with a given bandwidth allocation. The average throughput degradation of GSF on a 8times8 mesh network is within 10% compared to the conventional best-effort VC router in most cases.

Published in:

Computer Architecture, 2008. ISCA '08. 35th International Symposium on

Date of Conference:

21-25 June 2008