By Topic

A machine learning approach for miRNA target prediction

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Hui Liu ; SIEE, China Univ. of Min. & Technol., Jiangsu ; Dong Yue ; Lin Zhang ; Shou-Jiang Gao
more authors

MicroRNAs (miRNAs) are 21 or 22 nucleotides noncoding RNAs known to possess important post-transcriptional regulatory functions. Identifying targeting genes that miRNAs regulate is important for understanding their specific biological functions. Usually, miRNAs down-regulate target genes through binding to the complementary sites in the 3' untranslated region (UTR) of the targets. Since the binding of the miRNAs of animals is not a perfect one-to-one match with the complementary sites of their targets, it is difficult to find targets of animal miRNAs by accessing their alignment to the 3' UTRs of potential targets. More sophisticated computational approaches are desirable and have been proposed as a result. The most popular algorithms include TargetScan, miRanda, and PicTar. However, they share similar methodology and are restricted by the human observation of conserved nature of miRNAs and their targets. In this article, we develop a statistical learning based approach that uses support vector machine (SVM) as a classifier to predict miRNA targets. SVM have been applied in many fields such as pattern recognition, computational biology, and medical image analysis. With SVM, information is gained automatically from relevant data and therefore human bias can be removed in the decision process.

Published in:

Genomic Signal Processing and Statistics, 2008. GENSiPS 2008. IEEE International Workshop on

Date of Conference:

8-10 June 2008