By Topic

Measurement Techniques in a Hybrid Approach for Deriving Tight Execution-time Bounds of Program Segments in Fully-featured Processors

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

A hybrid approach to deriving tight execution-time bounds of program segments was proposed very recently. This approach symbiotically combines analytical and measurement-based methods to find a tight execution- time bound falling between the maximum measured execution time and an analytically derived loose bound. It also enables the estimation of the probability of the derived tight bound not being exceeded at run time. This paper provides a refined description of the hybrid approach and presents techniques for measuring the execution times of acyclic-path segments (APSs), which are possible execution sequences of instructions that contain no cycles and the basic units of analysis in the hybrid approach. In this paper, we also report the results of the hybrid approach in the derivation of tight execution-time bounds of three algorithms frequently used in the evaluation of WCET analysis techniques.

Published in:

Real-Time and Embedded Technology and Applications Symposium, 2008. RTAS '08. IEEE

Date of Conference:

22-24 April 2008