By Topic

Efficient Optical Burst-Switched networks using only Fiber Delay Line buffers for contention resolution

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Pedro, Joao ; Nokia Siemens Networks Portugal S.A., R. Irmãos Siemens 1, 2720-093 Amadora, Portugal ; Monteiro, P. ; Pires, Joao

The prospects of Optical Burst Switching (OBS) as a cost-effective switching paradigm for future all-optical transport networks could greatly benefit from avoiding the use of complex and expensive all-optical wavelength converters at the network nodes. However, contention resolution is essential to achieve reasonable bandwidth utilization efficiency in OBS networks and replacing the wavelength converters by Fiber Delay Line (FDL) buffers requires huge numbers of FDLs and large space switches, thus also rendering complex network nodes. This paper proposes combining the use of a priority-based wavelength assignment and burst scheduling strategy at the ingress nodes, which minimizes the probability of contention, with the use of shared FDL buffers at the core nodes to resolve the unavoidable contentions. The objective is to design OBS networks employing only moderate numbers of simple FDL buffers while matching the performance of a network using full-range wavelength converters. Simulation results using a reference network topology show that this goal is feasible. Moreover, the FDL buffer requirements are shown to depend on the offered traffic load, the number of wavelengths per link, and the maximum burst delay at the ingress node.

Published in:

Broadband Communications, Networks and Systems, 2007. BROADNETS 2007. Fourth International Conference on

Date of Conference:

10-14 Sept. 2007