We are currently experiencing intermittent issues impacting performance. We apologize for the inconvenience.
By Topic

Self-* Overload Control for Distributed Web Systems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Bartolini, N. ; Dept. of Comput. Sci., Univ. of Rome "Sapienza", Rome ; Bongiovanni, G. ; Silvestri, S.

Unexpected increases in demand and most of all flash crowds are considered the bane of every Web application as they may cause intolerable delays or even service unavailability. Proper quality of service policies must guarantee rapid reactivity and responsiveness even in such critical situations. Previous solutions fail to meet common performance requirements when the system has to face sudden and unpredictable surges of traffic. Indeed they often rely on a proper setting of key parameters which requires laborious manual tuning, preventing a fast adaptation of the control policies. We contribute an original self-overload control (SOC) policy. This allows the system to self-configure a dynamic constraint on the rate of admitted sessions in order to respect service level agreements and maximize the resource utilization at the same time. Our policy does not require any prior information on the incoming traffic or manual configuration of key parameters. We ran extensive simulations under a wide range of operating conditions, showing that SOC rapidly adapts to time varying traffic and self-optimizes the resource utilization. It admits as many new sessions as possible in observance of the agreements, even under intense workload variations. We compared our algorithm to previously proposed approaches highlighting a more stable behavior and a better performance.

Published in:

Quality of Service, 2008. IWQoS 2008. 16th International Workshop on

Date of Conference:

2-4 June 2008