By Topic

Self-tuning control for active steering of a railway vehicle with solid-axle wheelsets

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $31
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Selamat, H. ; Electr. Eng. Fac., Univ. Teknol. Malaysia, Skudai ; Yusof, R. ; Goodall, R.M.

The instability caused by the conical (or profiled) shape of a solid-axle railway wheelset can be overcome by proper design of the vehicle's primary suspension system but is generally difficult as some of the wheelset parameters, namely the conicity and creep coefficients, are time-varying. To maintain the wheelset stability at high speeds and satisfactory curving performance simultaneously over the whole range of the parameters' variations, the self-tuning linear-quadratic regulator (S-T LQ.R) for the primary suspension system of a high-speed two-axle railway vehicle has been developed. The objective of the controller was to minimize the lateral displacement of the wheelset relative to track centerline and its yaw angle, on straight and curved tracks. The Continuous-time Least-Absolute Error with Variable Forgetting Factor (C-T LAE + VFF) estimation algorithm has been used to estimate the wheelset parameters before being used in the calculation of the linear quadratic feedback control gain matrix. The simulation results show that the S-T LQ.R performed better than the fixed-gain LQ.R for both the conical and profiled wheelset, suggesting that the ability to estimate the time-varying wheelset parameters and use them in the feedback controller design is necessary to produce better primary suspension control performance.

Published in:

Control Theory & Applications, IET  (Volume:2 ,  Issue: 5 )