By Topic

Branch-and-Bound Methods for Euclidean Registration Problems

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Carl Olsson ; Lund University, Lund ; Fredrik Kahl ; Magnus Oskarsson

In this paper, we propose a practical and efficient method for finding the globally optimal solution to the problem of determining the pose of an object. We present a framework that allows us to use point-to-point, point-to-line, and point-to-plane correspondences for solving various types of pose and registration problems involving euclidean (or similarity) transformations. Traditional methods such as the iterative closest point algorithm or bundle adjustment methods for camera pose may get trapped in local minima due to the nonconvexity of the corresponding optimization problem. Our approach of solving the mathematical optimization problems guarantees global optimality. The optimization scheme is based on ideas from global optimization theory, in particular convex underestimators in combination with branch-and-bound methods. We provide a provably optimal algorithm and demonstrate good performance on both synthetic and real data. We also give examples of where traditional methods fail due to the local minima problem.

Published in:

IEEE Transactions on Pattern Analysis and Machine Intelligence  (Volume:31 ,  Issue: 5 )