By Topic

SybilLimit: A Near-Optimal Social Network Defense against Sybil Attacks

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Haifeng Yu ; Nat. Univ. of Singapore, Singapore ; Gibbons, P.B. ; Kaminsky, M. ; Feng Xiao

Decentralized distributed systems such as peer-to-peer systems are particularly vulnerable to sybil attacks, where a malicious user pretends to have multiple identities (called sybil nodes). Without a trusted central authority, defending against sybil attacks is quite challenging. Among the small number of decentralized approaches, our recent SybilGuard protocol [H. Yu et al., 2006] leverages a key insight on social networks to bound the number of sybil nodes accepted. Although its direction is promising, SybilGuard can allow a large number of sybil nodes to be accepted. Furthermore, SybilGuard assumes that social networks are fast mixing, which has never been confirmed in the real world. This paper presents the novel SybilLimit protocol that leverages the same insight as SybilGuard but offers dramatically improved and near-optimal guarantees. The number of sybil nodes accepted is reduced by a factor of ominus(radicn), or around 200 times in our experiments for a million-node system. We further prove that SybilLimit's guarantee is at most a log n factor away from optimal, when considering approaches based on fast-mixing social networks. Finally, based on three large-scale real-world social networks, we provide the first evidence that real-world social networks are indeed fast mixing. This validates the fundamental assumption behind SybilLimit's and SybilGuard's approach.

Published in:

Security and Privacy, 2008. SP 2008. IEEE Symposium on

Date of Conference:

18-22 May 2008