By Topic

Quantitative Evaluation of Statistical Variability Sources in a 45-nm Technological Node LP N-MOSFET

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

7 Author(s)

A quantitative evaluation of the contributions of different sources of statistical variability, including the contribution from the polysilicon gate, is provided for a low-power bulk N-MOSFET corresponding to the 45-nm technology generation. This is based on a joint study including both experimental measurements and ldquoatomisticrdquo simulations on the same fully calibrated device. The position of the Fermi-level pinning in the polysilicon bandgap that takes place along grain boundaries was evaluated, and polysilicon-gate-granularity contribution was compared to the contributions of other variability sources. The simulation results indicate that random discrete dopants are still the dominant intrinsic source of statistical variability, while the role of polysilicon-gate granularity is highly dependent on Fermi-level pinning position and, consequently, on the structure of the polysilicon-gate material and its deposition and annealing conditions.

Published in:

IEEE Electron Device Letters  (Volume:29 ,  Issue: 6 )