By Topic

Online fluid-monitoring using an electromechanical cantilever

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Jungwirth, M. ; Univ. of Appl. Sci. Upper Austria, Wels

The parameters viscosity and density of a fluid or liquid may give information on its condition and consistence. In many industrial applications this information is essential and should be available throughout the whole process. Conventional viscometers and hydrometers are mostly bulky and slow in response time. Microacoustic liquid sensors based on the piezoelectric effect could overcome these problems. For Newtonian liquids a variety of devices using the transversal shear effect or surface acoustic waves is already in the market. They are operated at very high frequencies and relatively small amplitudes of vibration resulting in a small decay length into the contacting viscous fluid. For non-Newtonian liquids or emulsions an electromechanical cantilever resonating at lower frequencies with much higher deflections may be better suited. In this work, a trimorph-type cantilever is investigated by measurements and finite-element simulations. It is shown that the cantilever could be feasible for the online monitoring of fluids or liquids.

Published in:

Thermal, Mechanical and Multi-Physics Simulation and Experiments in Microelectronics and Micro-Systems, 2008. EuroSimE 2008. International Conference on

Date of Conference:

20-23 April 2008