By Topic

Bayesian Compressive Sensing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Shihao Ji ; Dept. of Electr. & Comput. Eng., Duke Univ., Durham, NC ; Ya Xue ; Lawrence Carin

The data of interest are assumed to be represented as N-dimensional real vectors, and these vectors are compressible in some linear basis B, implying that the signal can be reconstructed accurately using only a small number M Lt N of basis-function coefficients associated with B. Compressive sensing is a framework whereby one does not measure one of the aforementioned N-dimensional signals directly, but rather a set of related measurements, with the new measurements a linear combination of the original underlying N-dimensional signal. The number of required compressive-sensing measurements is typically much smaller than N, offering the potential to simplify the sensing system. Let f denote the unknown underlying N-dimensional signal, and g a vector of compressive-sensing measurements, then one may approximate f accurately by utilizing knowledge of the (under-determined) linear relationship between f and g, in addition to knowledge of the fact that f is compressible in B. In this paper we employ a Bayesian formalism for estimating the underlying signal f based on compressive-sensing measurements g. The proposed framework has the following properties: i) in addition to estimating the underlying signal f, "error bars" are also estimated, these giving a measure of confidence in the inverted signal; ii) using knowledge of the error bars, a principled means is provided for determining when a sufficient number of compressive-sensing measurements have been performed; iii) this setting lends itself naturally to a framework whereby the compressive sensing measurements are optimized adaptively and hence not determined randomly; and iv) the framework accounts for additive noise in the compressive-sensing measurements and provides an estimate of the noise variance. In this paper we present the underlying theory, an associated algorithm, example results, and provide comparisons to other compressive-sensing inversion algorithms in the literature.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 6 )