By Topic

Flicker Contribution of a Wind Power Plant with Single and Multiple Turbine Representations

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Roohollah Fadaeinedjad ; Department of Electrical and Computer Engineering, University of Western Ontario, London, ON, N6A 5B9 Canada and School of Engineering Science, Simon Fraser University, Surrey, BC, V3T 0A3 Canada e-mails: ; Mehrdad Moallem ; Gerry Moschopoulos ; Sondeep Bassan

In order to study the impact of a wind power plant on network power quality all electrical, mechanical and aerodynamic aspects of wind turbines must be studied. Moreover, the contribution of every wind turbine on the wind power plant should be considered. Representing a large wind power plant by a single wind turbine (WT) or a few wind turbines results in a severer situation with regards to power quality. In the paper, however, a previously introduced wind power plant representation method, so called "quasi-multiple turbine representation (QMTR) method", is used to consider the effect of all WTs of the wind farm. It is shown that Simulink, FAST, AeroDyn, and TurbSim can be used to model the electrical, mechanical, and aerodynamic aspects of a wind power plant with 96 fixed-speed WTs. The model is used to calculate the voltage, active, and reactive powers at point of common coupling (PCC). Flicker is one of the most important power quality measures. It is induced by voltage fluctuations, which are caused by load flow changes in the grid. Modelling of an IEEE standard flickermeter in Simulink environment, instantaneous flicker sensations for two different wind power plant representations are compared. It will be shown that the QMTR method, which considers all WTs of the wind farm shows less flicker at PCC.

Published in:

Electrical Power Conference, 2007. EPC 2007. IEEE Canada

Date of Conference:

25-26 Oct. 2007