Cart (Loading....) | Create Account
Close category search window
 

Supervisory Hybrid Control of a Micro Grid System

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Khan, M.S. ; Dept. of Electr. & Comput. Eng., Univ. of Toronto, Toronto, ON ; Iravani, M.R.

This paper presents a systematic approach for the design and analysis of a supervisory hybrid control scheme for a micro grid system using hybrid control techniques. A generic micro grid configuration is assumed. The approach is elaborated with a specific micro grid configuration containing a self-excited induction machine based wind energy conversion system. By definition a micro grid operates in both grid-connected and in isolated modes. In each mode of operation there could be different combinations of the available energy sources in the system that are catering to the load demand. A hybrid control scheme which utilizes different control mechanisms for optimal control of a system under different operating conditions and in different operating states, presents an attractive paradigm for the control design of such a system. By partitioning a micro grid into different modules along suitable axis, the complexity of a Multiple Input Multiple Output (MIMO) control problem of the system can be significantly reduced. The control of the different modules of a micro grid system can then be tackled using the well established linear control theory which could then be combined using suitable transition, load and power management strategies to achieve optimal control of the micro grid system in all its desirable operating states. Supervisory hybrid control of a wind energy conversion and storage system is presented to illustrate the supervisory hybrid control design and analysis philosophy outlined in this paper.

Published in:

Electrical Power Conference, 2007. EPC 2007. IEEE Canada

Date of Conference:

25-26 Oct. 2007

Need Help?


IEEE Advancing Technology for Humanity About IEEE Xplore | Contact | Help | Terms of Use | Nondiscrimination Policy | Site Map | Privacy & Opting Out of Cookies

A not-for-profit organization, IEEE is the world's largest professional association for the advancement of technology.
© Copyright 2014 IEEE - All rights reserved. Use of this web site signifies your agreement to the terms and conditions.