By Topic

Fast query by example of environmental sounds via robust and efficient cluster-based indexing

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Jiachen Xue ; Arts, Media, and Engineering Arizona State University Tempe, 85281 USA ; Gordon Wichern ; Harvey Thornburg ; Andreas Spanias

There has been much recent progress in the technical infrastructure necessary to continuously characterize and archive all sounds, or more precisely auditory streams, that occur within a given space or human life. Efficient and intuitive access, however, remains a considerable challenge. In specifically musical domains, i.e., melody retrieval, query-by-example (QBE) has found considerable success in accessing music that matches a specific query. We propose an extension of the QBE paradigm to the broad class of natural and environmental sounds, which occur frequently in continuous recordings. We explore several cluster-based indexing approaches, namely non-negative matrix factorization (NMF) and spectral clustering to efficiently organize and quickly retrieve archived audio using the QBE paradigm. Experiments on a test database compare the performance of the different clustering algorithms in terms of recall, precision, and computational complexity. Initial results indicate significant improvements over both exhaustive search schemes and traditional K- means clustering, and excellent overall performance in the example-based retrieval of environmental sounds.

Published in:

2008 IEEE International Conference on Acoustics, Speech and Signal Processing

Date of Conference:

March 31 2008-April 4 2008