By Topic

Cold Mass Cooling Design Studies for an LHC Inner Triplet Upgrade

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

1 Author(s)
Roger J. Rabehl ; Fermi Nat. Accel. Lab., Batavia, IL

A luminosity upgrade of the CERN Large Hadron Collider (LHC) is planned to coincide with the expected end of life of the existing inner triplet quadrupole magnets. The upgraded inner triplet will have much larger heat loads to be removed from the magnets by the cryogenics system. As part of the LHC Accelerator Research Program (LARP), a design study has been completed to investigate the required characteristics of the cold mass cooling system within the framework of a design temperature profile. These characteristics are the beam pipe annulus, collar radial cooling channels, yoke radial cooling channels, yoke longitudinal cooling channels, and heat exchanger connecting pipe. Using these parameters in conjunction with energy deposition calculations, longitudinal and radial temperature profiles for an entire inner triplet are calculated and presented.

Published in:

IEEE Transactions on Applied Superconductivity  (Volume:18 ,  Issue: 2 )