By Topic

Estimation methods using dynamic phasors for numerical distance protection

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $33
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
B. Grcar ; Fac. of Electr. Eng. & Comput. Sci., Univ. of Maribor, Maribor ; J. Ritonja ; B. Polajzer ; A. M. Stankovic

Several new methods for faulted transmission line parameters estimation in phasor and time domain are proposed, that eventually improve the overall performance of numerical distance relays. The concept of dynamic phasors is introduced to accommodate the time-variant nature of the current and voltage signals during transients and faults. Based on dynamic phasor transmission line models, direct and indirect estimation methods are derived. For the proposed indirect estimation method, stability of prediction error dynamics is assured by using the Lyapunov direct method. Presented estimation techniques are compared with a conventional stationary phasor solution as well as with a recursive least-square estimator derived in the discrete time domain. In the evaluation, more realistic assumptions are considered with regards to distortion of the input voltage and current signals along with the variable fault resistance because of arcing faults. Simulation results and actual field measurements are included for performance evaluation of the proposed estimators.

Published in:

IET Generation, Transmission & Distribution  (Volume:2 ,  Issue: 3 )