By Topic

A General Stance Stability Test Based on Stratified Morse Theory With Application to Quasi-Static Locomotion Planning

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Rimon, E. ; Dept. of Mech. Eng., Technion-Israel Inst. of Technol., Haifa ; Mason, R. ; Burdick, J.W. ; Or, Y.

This paper considers the stability of an object supported by several frictionless contacts in a potential field such as gravity. The bodies supporting the object induce a partition of the object's configuration space into strata corresponding to different contact arrangements. Stance stability becomes a geometric problem of determining whether the object's configuration is a local minimum of its potential energy function on the stratified configuration space. We use stratified Morse theory to develop a generic stance stability test that has the following characteristics. For a small number of contacts - less than three in 2D and less than six in 3D - stance stability depends both on surface normals and surface curvature at the contacts. Moreover, lower curvature at the contacts leads to better stability. For a larger number of contacts, stance stability depends only on surface normals at the contacts. The stance stability test is applied to quasi-static locomotion planning in two dimensions. The region of stable center-of-mass positions associated with a k-contact stance is characterized. Then, a quasi-static locomotion scheme for a three-legged robot over a piecewise linear terrain is described. Finally, friction is shown to provide robustness and enhanced stability for the frictionless locomotion plan. A full maneuver simulation illustrates the locomotion scheme.

Published in:

Robotics, IEEE Transactions on  (Volume:24 ,  Issue: 3 )