By Topic

Discovering Neglected Conditions in Software by Mining Dependence Graphs

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Ray-Yaung Chang ; Case Western Reserve Univ., Cleveland, OH ; Podgurski, A. ; Jiong Yang

Neglected conditions are an important but difficult-to-find class of software defects. This paper presents a novel approach to revealing neglected conditions that integrates static program analysis and advanced data mining techniques to discover implicit conditional rules in a code base and to discover rule violations that indicate neglected conditions. The approach requires the user to indicate minimal constraints on the context of the rules to be sought, rather than specific rule templates. To permit this generality, rules are modeled as graph minors of enhanced procedure dependence graphs (EPDGs), in which control and data dependence edges are augmented by edges representing shared data dependences. A heuristic maximal frequent subgraph mining algorithm is used to extract candidate rules from EPDGs, and a heuristic graph matching algorithm is used to identify rule violations. We also report the results of an empirical study in which the approach was applied to four open source projects (openssl, make, procmail, amaya). These results indicate that the approach is effective and reasonably efficient.

Published in:

Software Engineering, IEEE Transactions on  (Volume:34 ,  Issue: 5 )