By Topic

Evolutionary Coherence of Nonstationary Signals

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Hernando Ombao ; Dept. of Community Health Biostat., Brown Univ., Providence, RI ; S√Čbastien Van Bellegem

Coherence is a widely used measure for characterizing linear dependence between a pair of signals. For nonstationary signals, the autospectrum, cross spectrum, and coherence between signals may evolve over time. A standard approach is to divide the signals into overlapping blocks of fixed width and then smooth (over frequency) the periodogram matrix at each time block. In this paper, a consistent estimation procedure is developed using time-localized linear filtering. The proposed method automatically selects, via repeated tests of homogeneity, the optimal window width for estimating local coherence. It is pointwise adaptive in the sense that the width of the optimal interval is allowed to change across time. Under the locally stationary process framework, we develop a central limit theorem on the Fisher-z transform of our time-localized band coherence. We apply our method to a pair of highly dynamic brain waves signals whose coherence is shown to evolve during an epileptic seizure.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 6 )