By Topic

Dynamics Modeling and Analysis of a Swimming Microrobot for Controlled Drug Delivery

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Huaming Li ; Dept. of Electr. & Comput. Eng., Michigan Technol. Univ., Houghton, MI ; Jindong Tan ; Mingjun Zhang

Dynamics modeling and analysis of a tiny swimming robot, which is composed of a helix type head and an elastic tail, is presented in this paper. The microrobot is designed for controlled drug delivery. It is at the micrometer scale and suitable for a swimming environment under low Reynolds number (Re). The head of the swimming robot is driven by an external rotating magnetic field, which enables it to be operated wirelessly. The spiral-type head accommodates communication and control units and serves as the base for the elastic tail. When a rotating magnetic field is applied, the head rotates synchronously with the field, generating and propagating driving torque to the straight elastic tail. When the driving torque reaches a threshold, dramatic deformation takes place on the elastic tail. The tail then transforms into a helix and generates propulsive thrust. The entire tail also serves as a drug reservoir. This paper focuses on analyzing the dynamics of the microrobot using resistive force theory (RFT), and comparing the propulsion performance with other rigid-body microrobots.

Published in:

Automation Science and Engineering, IEEE Transactions on  (Volume:6 ,  Issue: 2 )