By Topic

Light-Actuated AC Electroosmosis for Nanoparticle Manipulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Pei-Yu Chiou ; Mech. & Aerosp. Eng. Dept., Univ. of California, Los Angeles, CA ; Ohta, A.T. ; Jamshidi, A. ; Hsin-Yi Hsu
more authors

We present a novel light-actuated ac electroosmosis (LACE) mechanism that allows the concentration and transportation of micro- and nanoscopic particles using light-patterned dynamically reconfigured microfluidic vortices on a photoconductive surface. LACE is realized by sandwiching an aqueous liquid medium between a featureless photoconductive surface and a transparent indium tin oxide electrode. By applying an ac electrical bias with a frequency that is close to the electric double-layer relaxation frequency, a light-patterned virtual electrode can induce ac electroosmotic flow to concentrate and transport nanoscopic particles on the photoconductive surface. By integrating with a spatial light modulator such as a digital micromirror device microdisplay, we can create 31000 microfluidic vortices on a 1.3 times 1-mm2 area for massively parallel trapping of 2- and 1-mum polystyrene beads. We have also demonstrated LACE concentration and transportation of nanoscopic particles including 200- and 50-nm polystyrene beads, lambda-phage DNA molecules, and quantum dots.

Published in:

Microelectromechanical Systems, Journal of  (Volume:17 ,  Issue: 3 )