By Topic

Dictionary Preconditioning for Greedy Algorithms

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Karin Schnass ; Swiss Fed. Inst. of Technol., Lausanne ; Pierre Vandergheynst

This paper introduces the concept of sensing dictionaries. It presents an alteration of greedy algorithms like thresholding or (orthogonal) matching pursuit which improves their performance in finding sparse signal representations in redundant dictionaries while maintaining the same complexity. These algorithms can be split into a sensing and a reconstruction step, and the former will fail to identify correct atoms if the cumulative coherence of the dictionary is too high. We thus modify the sensing step by introducing a special sensing dictionary. The correct selection of components is then determined by the cross cumulative coherence which can be considerably lower than the cumulative coherence. We characterize the optimal sensing matrix and develop a constructive method to approximate it. Finally, we compare the performance of thresholding and OMP using the original and modified algorithms.

Published in:

IEEE Transactions on Signal Processing  (Volume:56 ,  Issue: 5 )