By Topic

Adapting SVM Classifiers to Data with Shifted Distributions

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)

Many data mining applications can benefit from adapt- ing existing classifiers to new data with shifted distribu- tions. In this paper, we present Adaptive Support Vector Machine (Adapt-SVM) as an efficient model for adapting a SVM classifier trained from one dataset to a new dataset where only limited labeled examples are available. By in- troducing a new regularizer into SVM's objective function, Adapt-SVM aims to minimize both the classification error over the training examples, and the discrepancy between the adapted and original classifier. We also propose a selective sampling strategy based on the loss minimization principle to seed the most informative examples for classifier adap- tation. Experiments on an artificial classification task and on a benchmark video classification task shows that Adapt- SVM outperforms several baseline methods in terms of ac- curacy and/or efficiency.

Published in:

Seventh IEEE International Conference on Data Mining Workshops (ICDMW 2007)

Date of Conference:

28-31 Oct. 2007