By Topic

Tensor Space Learning for Analyzing Activity Patterns from Video Sequences

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)

Statistical topic models such as the Latent Dirichlet Allocation (LDA) have emerged as an attractive framework to model, visualize and summarize large document collections in a completely unsupervised fashion. Considering the enormous sizes of the modern electronic document collections, it is very important that these models are fast and scalable. In this work, we build parallel implementations of the variational EM algorithm for LDA in a multiprocessor architecture as well as a distributed setting. Our experiments on various sized document collections indicate that while both the implementations achieve speed-ups, the distributed version achieves dramatic improvements in both speed and scalability. We also analyze the costs associated with various stages of the EM algorithm and suggest ways to further improve the performance.

Published in:

Data Mining Workshops, 2007. ICDM Workshops 2007. Seventh IEEE International Conference on

Date of Conference:

28-31 Oct. 2007