By Topic

A Minimax Chebyshev Estimator for Bounded Error Estimation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Eldar, Y.C. ; Technion - Israel Inst. of Technol., Haifa ; Beck, A. ; Teboulle, M.

We develop a nonlinear minimax estimator for the classical linear regression model assuming that the true parameter vector lies in an intersection of ellipsoids. We seek an estimate that minimizes the worst-case estimation error over the given parameter set. Since this problem is intractable, we approximate it using semidefinite relaxation, and refer to the resulting estimate as the relaxed Chebyshev center (RCC). We show that the RCC is unique and feasible, meaning it is consistent with the prior information. We then prove that the constrained least-squares (CLS) estimate for this problem can also be obtained as a relaxation of the Chebyshev center, that is looser than the RCC. Finally, we demonstrate through simulations that the RCC can significantly improve the estimation error over the CLS method.

Published in:

Signal Processing, IEEE Transactions on  (Volume:56 ,  Issue: 4 )