By Topic

An Optimal Control Technique for Multiphase PM Machines Under Open-Circuit Faults

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Dwari, S. ; Rensselaer Polytech. Inst., Troy ; Parsa, L.

In this paper, an optimal control technique for n-phase permanent-magnet (PM) machines under various open circuit faults is presented. Under the fault conditions, the currents in the healthy phases are controlled to compensate phase loss and to produce the required output torque. The proposed control technique ensures continuous operation of the machines while producing minimum torque ripples and minimum stator ohmic loss. The control technique is based on the instantaneous power balance theory. To set the summation of the phase currents equal to zero, a constraint is incorporated in the derivation of the control technique. A five-phase PM machine is considered to demonstrate the proposed open circuit fault-tolerant control strategy. Simulation and experimental results are provided for validation.

Published in:

Industrial Electronics, IEEE Transactions on  (Volume:55 ,  Issue: 5 )