By Topic

Statistical Techniques for Detecting Traffic Anomalies Through Packet Header Data

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Seong Soo Kim ; Digital Media R&D Center, Samsung Electron. Co., Ltd., Suwon ; Reddy, A.L.N.

This paper proposes a traffic anomaly detector, operated in postmortem and in real-time, by passively monitoring packet headers of traffic. The frequent attacks on network infrastructure, using various forms of denial of service attacks, have led to an increased need for developing techniques for analyzing network traffic. If efficient analysis tools were available, it could become possible to detect the attacks, anomalies and to take action to contain the attacks appropriately before they have had time to propagate across the network. In this paper, we suggest a technique for traffic anomaly detection based on analyzing correlation of destination IP addresses in outgoing traffic at an egress router. This address correlation data are transformed using discrete wavelet transform for effective detection of anomalies through statistical analysis. Results from trace-driven evaluation suggest that proposed approach could provide an effective means of detecting anomalies close to the source. We also present a multidimensional indicator using the correlation of port numbers and the number of flows as a means of detecting anomalies.

Published in:

Networking, IEEE/ACM Transactions on  (Volume:16 ,  Issue: 3 )