By Topic

Space–Frequency Ultrawideband Time-Reversal Imaging

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Yavuz, M.E. ; Ohio State Univ., Columbus ; Teixeira, F.L.

We introduce time-reversal ultrawideband (UWB) imaging functionals based on the simultaneous utilization of spatial and UWB frequency data acquired by limited-aspect antenna arrays. The targets are discrete scatterers embedded in homogeneous or continuous random inhomogeneous media. Singular value decomposition is applied to space-frequency multistatic scattering data matrices indexed by sensor location and frequency data, and the resulting singular values and vectors are employed to construct time-domain excitation signals for UWB imaging of the embedded scatterer(s) via synthetic backpropagation (reverse migration). Spatial information needed for focusing on the embedded scatterer(s) is provided by either the left singular vectors or the eigenvectors of the space-space multistatic data matrices. The resulting UWB imaging functionals can yield statistical stability in random media.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 4 )