By Topic

Knowledge-Based Segmentation for Tracking Through Deep Turbulence

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

6 Author(s)

A combined knowledge-based segmentation/active contour algorithm is used for target tracking through turbulence. The algorithm utilizes Bayesian modeling for segmentation of noisy imagery obtained through longrange, laser imaging of a distance target, and active contours for tip tracking. The algorithm demonstrates improved target tracking performance when compared to weighted centroiding. Open-loop and closed-loop comparisons of the algorithms using simulated imagery validate the hypothesis.

Published in:

IEEE Transactions on Control Systems Technology  (Volume:16 ,  Issue: 3 )