By Topic

Design and Characterization of Single-Layer Step-Bridge Structure for Out-of-Plane Thermal Actuator

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Wen-Chih Chen ; Nat. Tsing Hua Univ., Hsinchu ; Po-I Yeh ; Chih-Fan Hu ; Weileun Fang

This paper presents the design and fabrication of a single-layer out-of-plane thermal actuator. The step-bridge structure design enables bending and then buckling of the actuator in the out-of-plane direction by Joule heating. Moreover, the moving direction of the actuator can be specified by the step structure. In summary, the step-bridge actuator design has the following five merits: (1) The load-deflection relation is easily tuned; (2) the bistable buckling behavior is prevented; (3) the unwanted vibration modes can be suppressed; (4) the delamination problem is prevented; and (5) the bridge structure is stiffer and more stable. The actuator and its application on a lens positioning stage have been implemented using p++ Si layer by bulk micromachining. It demonstrates that a typical actuator would move upward with an amplitude near 13 mum when driven at 54 mW.

Published in:

Microelectromechanical Systems, Journal of  (Volume:17 ,  Issue: 1 )