By Topic

Multidimensional Probability Density Function Matching for Preprocessing of Multitemporal Remote Sensing Images

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

4 Author(s)
Inamdar, S. ; Samsung India Software Oper., Bangalore ; Bovolo, F. ; Bruzzone, L. ; Chaudhuri, S.

This paper addresses the problem of matching the statistical properties of the distributions of two (or more) multi-spectral remote sensing images acquired on the same geographical area at different times. An N-D probability density function (pdf) matching technique for the preprocessing of multitemporal images is introduced in the remote sensing domain by defining and analyzing three important application scenarios: 1) supervised classification; 2) partially supervised classification; and 3) change detection. Unlike other methods adopted in remote sensing applications, the procedure considered performs the matching process by properly taking into account the correlation among spectral channels, thus retaining the data correlation structure after the pdf matching. Experimental results obtained on real multitemporal remote sensing data sets confirm the validity of the presented technique in all the considered scenarios.

Published in:

Geoscience and Remote Sensing, IEEE Transactions on  (Volume:46 ,  Issue: 4 )