By Topic

Implantable parylene-based wireless intraocular pressure sensor

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$33 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

5 Author(s)
Po-Jui Chen ; California Institute of Technology, Pasadena, USA ; Damien C. Rodger ; Saloomeh Saati ; Mark S. Humayun
more authors

This paper presents a novel implantable, wireless, passive pressure sensor for ophthalmic applications. Two sensor designs incorporating surface-micromachined variable capacitor and variable capacitor/inductor are implemented to realize the pressure sensitive components. The sensor is monolithically microfabricated using parylene as a biocompatible structural material in a suitable form factor for increased ease of intraocular implantation. Pressure responses of the microsensor are characterized on-chip to demonstrate its high pressure sensitivity (> 7000 ppm/mmHg) with mmHg level resolution. An in vivo animal study verifies the biostability of the sensor implant in the intraocular environment after more than 150 days. This sensor will ultimately be implanted at the pars plana or iris of the eye to fulfill continuous intraocular pressure (IOP) monitoring in glaucoma patients.

Published in:

Micro Electro Mechanical Systems, 2008. MEMS 2008. IEEE 21st International Conference on

Date of Conference:

13-17 Jan. 2008