By Topic

Fault-Tolerant Optimal Neurocontrol for a Static Synchronous Series Compensator Connected to a Power Network

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

3 Author(s)
Wei Qiao ; Sch. of Electr. & Comput. Eng., Georgia Inst. of Technol., Atlanta, GA ; Harley, R.G. ; Venayagamoorthy, G.K.

This paper proposes a novel fault-tolerant optimal neurocontrol scheme (FTONC) for a static synchronous series compensator (SSSC) connected to a multimachine benchmark power system. The dual heuristic programming technique and radial basis function neural networks are used to design a nonlinear optimal neurocontroller (NONC) for the external control of the SSSC. Compared to the conventional external linear controller, the NONC improves the damping performance of the SSSC. The internal control of the SSSC is achieved by a conventional linear controller. A sensor evaluation and (missing sensor) restoration scheme (SERS) is designed by using the autoassociative neural networks and particle swarm optimization. This SERS provides a set of fault-tolerant measurements to the SSSC controllers, and therefore, guarantees a fault-tolerant control for the SSSC. The proposed FTONC is verified by simulation studies in the PSCAD/EMTDC environment.

Published in:

Industry Applications, IEEE Transactions on  (Volume:44 ,  Issue: 1 )