By Topic

Closed-Loop Control of Medium-Voltage Drives Operated With Synchronous Optimal Pulsewidth Modulation

Sign In

Cookies must be enabled to login.After enabling cookies , please use refresh or reload or ctrl+f5 on the browser for the login options.

Formats Non-Member Member
$31 $13
Learn how you can qualify for the best price for this item!
Become an IEEE Member or Subscribe to
IEEE Xplore for exclusive pricing!
close button

puzzle piece

IEEE membership options for an individual and IEEE Xplore subscriptions for an organization offer the most affordable access to essential journal articles, conference papers, standards, eBooks, and eLearning courses.

Learn more about:

IEEE membership

IEEE Xplore subscriptions

2 Author(s)
Oikonomou, N. ; Electr. Machines & Drives Group, Wuppertal Univ., Wuppertal ; Holtz, J.

Inverters for medium voltage drives operate at reduced switching frequency so as to restrain the dynamic losses of the power semiconductor devices. The resulting current harmonics can be reduced by synchronous optimal pulsewidth modulation (PWM), provided that steady-state conditions prevail. Transient conditions, however, interfere adversely with the optimal modulation patterns. Such conditions necessarily occur when the modulator forms part of a conventional closed-loop control scheme. Trajectory tracking control is employed to achieve high dynamic control in conjunction with synchronous optimal PWM. An optimal trajectory of the stator flux linkage vector is derived from the pulse pattern in actual use. The stator flux linkage vector is forced to follow this target trajectory. Modifying the target trajectory in transient conditions enables closed-loop torque control in a deadbeat fashion while conserving optimal modulation. Experimental results obtained from a 30-kW prototype drive operated at only 200 Hz switching frequency demonstrate the effectiveness of the approach.

Published in:

Industry Applications, IEEE Transactions on  (Volume:44 ,  Issue: 1 )